Последовательное и параллельное соединения конденсаторов: применение, формулы расчёта ёмкости и напряжения

У многих радиолюбителей, особенно приступающих впервые к конструированию электросхем, возникает вопрос, как надо подключить конденсатор требуемой ёмкости? Когда, к примеру, в каком-то месте схемы нужен конденсатор ёмкостью 470 мкФ, и такой элемент есть в наличии, то проблемы не возникнет. Но когда требуется поставить конденсатор на 2019 мкФ, а присутствуют только элементы неподходящей емкости, на помощь приходят схемы из нескольких конденсаторов, соединённых вместе. Соединять элементы можно, применяя параллельное и

последовательное соединение конденсаторов

по отдельности или по комбинированному принципу.

Последовательное соединение конденсаторов

Схема последовательного соединения

Когда применяется схема последовательного соединения конденсаторов, заряд каждой детали эквивалентен. С источником соединены только внешние пластины, другие – заряжаются перераспределением электрозарядов между ними. Все конденсаторы сохраняют аналогичное количество заряда на своих обкладках. Это объясняется тем, что на каждый последующий элемент поступает заряд от соседнего. Вследствие этого справедливо уравнение:

q = q1 = q2 = q3 = …

Известно, что при последовательном соединении резисторных элементов их сопротивления суммируются, но емкость конденсатора, включенного в такую электроцепь, рассчитывается по-другому.

Падение напряжения на отдельном конденсаторном элементе зависит от его емкости. Если в последовательной электроцепи имеется три конденсаторных элемента, составляется выражение для напряжения U  на основании закона Кирхгофа:

U = U1 + U2 + U3,

при этом U= q/C, U1 = q/C1, U2 = q/C2, U3 = q/C3.

Подставляя значения для напряжений в обе части уравнения, получается:

q/C = q/C1 + q/C2 + q/C3.

Так как электрозаряд q – величина одинаковая, на нее можно поделить все части полученного выражения.

Результирующая формула для емкостей конденсаторов:

1/С = 1/С1 + 1/С2 + 1/С3.

Важно! Если конденсаторы подключаются в последовательную электроцепь, показатель, обратный результирующей емкости, равен совокупности обратных значений единичных емкостей.

Особенности последовательного соединения

Пример. Три конденсаторных элемента подключены в последовательную цепь и обладают емкостями: С1 = 0,05 мкф, С2 = 0,2 мкФ, С3 = 0,4 мкФ. Рассчитать общую емкостную величину:

  1. 1/С = 1/0,05 + 1/0,2 + 1/0,4 = 27,5;
  2. С = 1/27,5 = 0,036 мкФ.

Важно! Когда конденсаторные элементы включены в последовательную электроцепь, общее емкостное значение не превышает наименьшей емкости отдельного элемента.

Если цепь состоит всего из двух компонентов, формула переписывается в таком виде:

С = (С1 х С2)/(С1 + С2).

В случае создания цепи из двух конденсаторов с идентичным емкостным значением:

С = (С х С)/(2 х С) = С/2.

Последовательно включенные конденсаторы имеют реактивное сопротивление, зависящее от частоты протекающего тока. На каждом конденсаторе напряжение падает из-за наличия этого сопротивления, поэтому на основе такой схемы создается емкостной делитель напряжения.

Емкостной делитель напряжения

Формула для емкостного делителя напряжения:

U1 = U x C/C1, U2 = U x C/C2, где:

  • U – напряжение питания схемы;
  • U1, U2 – падение напряжения на каждом элементе;
  • С – итоговая емкость схемы;
  • С1, С2 – емкостные показатели единичных элементов.

Вычисление падений напряжения на конденсаторах

К примеру, имеются сеть переменного тока 12 В и две альтернативных электроцепи подсоединения последовательных конденсаторных элементов:

  • первая – для подключения одного конденсатора С1 = 0,1 мкФ, другого С2 = 0,5 мкФ;
  • вторая – С1 = С2 = 400 нФ.

Первый вариант

  1. Итоговая емкость электросхемы С = (С1 х С2)/(С1 + С2) = 0,1 х 0,5/(0,1 + 0,5) = 0,083 мкФ;
  2. Падение напряжения на одном конденсаторе: U1 = U x C/C1 = 12 x 0,083/0,1 = 9,9 В
  3. На втором конденсаторе: U2 = U x C/C2 = 12 х 0,083/0,5 = 1,992 В.

Второй вариант

  1. Результирующая емкость С = 400 х 400/(400 + 400) = 200 нФ;
  2. Падение напряжения U1 = U2 = 12 x 200/400 = 6 В.

Согласно расчетам, можно сделать выводы, что если подключаются конденсаторы равных емкостей, вольтаж делится поровну на обоих элементах, а когда емкостные значения различаются, то на конденсаторе с меньшей емкостной величиной напряжение увеличивается, и наоборот.

Параллельное и комбинированное соединение

Параллельное соединение конденсаторов представляется иным уравнением. Для определения общего емкостного значения надо просто найти совокупность всех величин по отдельности:

С = С1 + С2 + С3 + …

Напряжение к каждому элементу будет прикладываться идентичное. Следовательно, для усиления емкости надо соединить несколько деталей параллельно.

Если соединения смешанные, последовательно-параллельные, то для таких контуров применяют эквивалентные, или упрощенные, электросхемы. Каждую область цепи рассчитывают отдельно, а затем, представляя их вычисленными емкостями, объединяют в простую цепь.

Варианты получения эквивалентных схем

Особенности замены конденсаторов

К примеру, в наличии сеть переменного тока 12 В и две альтернативных группы последовательных конденсаторных элементов.

Конденсаторы подсоединяются в последовательный контур для увеличения напряжения, под которым они остаются работоспособными, но их общая емкость падает в соответствии с формулой для ее расчета.

Часто применяется смешанное соединение конденсаторов, чтобы создать нужную емкостную величину и увеличить напряжение, которое детали способны выдержать.

Можно привести вариант, как соединить несколько компонентов, чтобы выйти на нужные параметры. Если требуется конденсаторный элемент 80 мкФ при напряжении 50 В, но есть только конденсаторы 40 мкФ на 25 В, необходимо образовать следующую комбинацию:

  1. Два конденсатора 40 мкФ/25 В подсоединить последовательно, что позволит иметь в общей сложности 20 мкФ /50 В;
  2. Теперь вступает в действие параллельное включение конденсаторов. Пара конденсаторных групп, включенных последовательно, созданных на первом этапе, соединяются параллельно, получится 40 мкФ / 50 В;
  3. Две собранные в итоге группы соединить параллельно, в результате получим 80 мкФ/50 В.

Важно! Для того чтобы усилить конденсаторы по напряжению, возможно их объединить в последовательную электросхему. Увеличение общей емкостной величины достигается параллельным подключением.

Что необходимо учитывать при создании последовательной цепи:

  1. При соединениях конденсаторов оптимальный вариант – брать элементы с мало различающимися или с одинаковыми параметрами, вследствие большой разницы в напряжениях разряда;
  2. Для баланса токов утечки на каждый конденсаторный элемент (в параллель) включается уравнительное сопротивление.

Получение неполярного конденсатора

Включение в последовательную цепь всегда должно происходить с соблюдением «плюса» и «минуса» конденсаторов. Если их соединить одноименными полюсами, то такое сочетание уже теряет поляризованность. При этом емкость созданной группы будет равна половине от емкостного значения одной из деталей. Такие конденсаторы возможно применять в качестве пусковых на электромоторах.

Видео

При последовательном соединении конденсаторов

последовательное соединение конденсаторов

Заряды на конденсаторах одинаковы.

\[ Q = Q_1 = Q_2 = … = Q_n \]

Полное напряжение равно сумме напряжений на отдельных конденсаторах.

\[ U = U_1 + U_2 + … + U_n \]

Емкость последовательно соединенных конденсаторов

При последовательном соединении конденсаторов величина, обратная величине полной емкости, равна сумме величин, обратных емкостей отдельных конденсаторов:

\[ \frac[-1.4]{1}{C_{последовательное}} = \frac[-1.4]{1}{C_1} + \frac[-1.4]{1}{C_2} + … + \frac[-1.4]{1}{C_n} \]

Два последовательно соединенных конденсатора

При последовательном соединении двух конденсаторов формула (4) упрощается:

\[ C = \frac[-1.4]{C_1 · C_2}{C_1 + C_2} \]

Вычислить найти емкость последовательно соединенных конденсаторов по формуле (3)

В помощь студенту

Последовательное соединение конденсаторов, Емкость последовательно соединенных конденсаторов

стр. 637
  1. При
    параллельном соединении конденсаторов
    к каждому кон­денсатору приложено
    одинаковое напряжениеU,
    а
    величина за­ряда на обкладках каждого
    конденсатора Q
    пропорциональна
    его емкости (рис. 2).

Рис.2

U=U1=U2=U3

  1. Общий
    заряд Q
    всех
    конденсаторов

  1. Общая
    емкость С,
    или
    емкость батареи, параллельно включенных
    конденсаторов равна сумме емкостей
    этих конденсаторов.

Параллельное
подключение конденсатора к группе
других включенных конденсаторов
увеличивает общую емкость батареи этих
конденсаторов. Следовательно, параллельное
соединение конденсаторов при­меняется
для увеличения емкости.

4)Если
параллельно включены т
одинаковых
конденсаторов ем­костью С´ каждый,
то общая (эквивалентная) емкость батареи
этих конденсаторов может быть определена
выражением

Последовательное соединение конденсаторов

Рис.3

  1. На
    обкладках последовательно соединенных
    конденсаторов, подключенных к источнику
    постоянного тока с напряжением U,
    появятся
    заряды одинаковые по величине с
    противоположными знаками.

Q=Q1=Q2=Q3

  1. Напряжение на
    конденсаторах распределяется обратно
    пропорционально емкостям конденса­торов:

  1. Обратная величина
    общей емкости последовательно соединенных
    конденсаторов равна сумме обратных
    величин емкостей этих кон­денсаторов.

При последовательном
включении двух конденсаторов их об­щая
емкость определяется следующим
выражением:

Если
в цепь включены последовательно п
одинаковых
конден­саторов емкостью С
каждый,
то общая емкость этих конденса­торов:

Из
(14) видно, что, чем больше конденсаторов
п
соединено
последовательно, тем меньше будет их
общая емкость С,
т.
е. по­следовательное включение
конденсаторов приводит к уменьше­нию
общей емкости батареи конденсаторов.

На
практике может оказаться , что допустимое
ра­бочее напряжение Up
конденсатора
меньше напряжения, на кото­рое
необходимо подключить конденсатор.
Если этот конденсатор подключить на
такое напряжение, то он выйдет из строя,
так как будет пробит диэлектрик. Если
же последовательно включить не­сколько
конденсаторов, то напряжение распределится
между ними и на каждом конденсаторе
напряжение окажется мень­ше его
допустимого рабочего Up.
Следовательно,
последовательное
соединение конденсаторов применяют
для того, чтобы напряжение на каждом
конденсаторе не превышало его рабочего
напряжения
Up.

Смешанное соединение конденсаторов

Смешанное соединение
(последовательно-параллельное)
кон­денсаторов применяют тогда, когда
необходимо увеличить ем­кость и
рабочее напряжение батареи конденсаторов.

Рассмотрим смешанное
соединение конденсаторов на ниже­приведенных
примерах.

Энергия
конденсаторов


где Q

заряд конденсатора или конденсаторов,
к которым при­ложено напряжение U;
С

электрическая емкость конденсатора
или батареи соединенных конденсаторов,
к которой приложено напряжение U.

Таким образом,
конденсаторы служат для накопления и
сохра­нения электрического поля и
его энергии.

15.Дайте
определение

понятиям

трех лучевая звезда и треугольник
сопротивлений. Запишите формулы для
преобразования трех лучевой звезды
сопротивлений в треугольник
сопротивлений
и наоборот. Преобразуйте схему к двум
узлам (Рисунок 5)

Рисунок 5- Схема
электрическая

6.СХЕМЫ ЗАМЕЩЕНИЯ

Для облегчения расчета составляется
схема замещения электрической цепи, т.
е. схема, отображающая свойства цепи
при определенных условиях.

На схеме замещения изображают все
элементы, влиянием которых на результат
расчета нельзя пренебречь, и указывают
также электрические соединения между
ними, которые имеются в цепи.

1.Схемы замещения элементов электрических
цепей

На расчетных схемах источник энергии
можно представить ЭДС без внутреннего
сопротивления, если это сопротивление
мало по сравнению с сопротивлением
приемника (рис. 3.13,6).

Приr= 0
внутреннее падение напряженияUо
= 0, поэтому

напряжение на зажимах источника
при любом токе равно

ЭДС: U=E=const.

В некоторых случаях источник электрической
энергии на расчетной схеме заменяют
другой (эквивалентной) схемой (рис. 3.14,
а), где вместо ЭДСЕ источник
характеризуется его током короткого
замыканияIK,
а вместо внутреннего со­противления
в расчет вводится внутренняя проводимостьg=1/r.

Возможность такой замены можно доказать,
разделив равенство (3.1) на r:

U/r
=
E/rI,

где U/r
=
Io—некоторый ток,
равный отношению напряжения на зажимах
источника к внутреннему сопротивлению;E/r
=
IK
— ток короткого замыкания источника;

Вводя новые обозначения, получим
равенство IK
=
Io + I,
которому удовлетворяет эквивалентная
схема рис. 3.14,а.

В этом случае при любой величине
напряжения на зажимах; источника его
ток остается равным току короткого
замыкания (рис. 3.14,6):

I=Iк=const.

Источник с неизменным током, не зависящим
от внешнего сопротивления, называют
источником тока.

Один и тот же источник электрической
энергии может быть заменен в расчетной
схеме источником ЭДС или источником
тока.

Любая электроника в доме может выйти из строя. Однако сразу бежать в сервис не стоит – простейшие приборы может продиагностировать и починить даже начинающий радиолюбитель. К примеру, сгоревший конденсатор виден невооружённым глазом. Но как быть, если под рукой нет детали подходящего номинала? Конечно, соединить 2 и более в цепь. Сегодня поговорим о таких понятиях, как параллельное и

последовательное соединение конденсаторов

, разберемся, как его выполнить, узнаем о способах соединения, правилах его выполнения.

Не всегда удаётся подобрать конденсатор нужного номинала

Нет конденсатора нужного номинала: что делать

Очень часто начинающие домашние мастера, обнаружив поломку прибора, стараются самостоятельно обнаружить причину. Увидев сгоревшую деталь, они стараются найти подобную, а если это не удаётся, несут прибор в ремонт. На самом деле, не обязательно, чтобы показатели совпадали. Можно использовать конденсаторы меньшего номинала, соединив их в цепь. Главное – сделать это правильно. При этом достигается сразу 3 цели – поломка устранена, приобретён опыт, сэкономлены средства семейного бюджета.

Попробуем разобраться, какие способы соединения существуют и на какие задачи рассчитаны последовательное и параллельное соединение конденсаторов.

Часто без соединения конденсаторов в батарею не обойтись. Главное – сделать это правильно

Соединение конденсаторов в батарею: способы выполнения

Существует 3 способа соединения, каждый из которых преследует свою определённую цель:

  1. Параллельное – выполняется в случае необходимости увеличить ёмкость, оставив напряжение на прежнем уровне.
  2. Последовательное – обратный эффект. Напряжение увеличивается, ёмкость уменьшается.
  3. Смешанное – увеличивается как ёмкость, так и напряжение.

Теперь рассмотрим каждый из способов более подробно.

Параллельное соединение: схемы, правила

На самом деле всё довольно просто. При параллельном соединении расчёт общей ёмкости можно вычислить путём простейшего сложения всех конденсаторов. Итоговая формула будет выглядеть следующим образом: Собщ= С₁ + С₂ + С₃ + … + Сn. При этом напряжение на каждом их элементов будет оставаться неизменным: Vобщ= V₁ = V₂ = V₃ = … = Vn.

Соединение при таком подключении будет иметь следующий вид:

Получается, что подобный монтаж подразумевает подключение всех пластин конденсаторов к точкам питания. Такой способ встречается наиболее часто. Но может произойти ситуация, когда важно увеличить напряжение. Разберёмся, каким образом это сделать.

Последовательное соединение: способ, используемый реже

При использовании способа последовательного подключения конденсаторов напряжение в цепи возрастает. Оно складывается из напряжения всех элементов и выглядит так: Vобщ= V₁ + V₂ + V₃ +…+ Vn. При этом ёмкость изменяется в обратной пропорции: 1/Собщ= 1/С₁ + 1/С₂ + 1/С₃ + … + 1/Сn. Рассмотрим изменения ёмкости и напряжения при последовательном включении на примере.

Дано: 3 конденсатора с напряжением 150 В и ёмкостью 300 мкф. Подключив их последовательно, получим:

  • напряжение: 150 + 150 + 150 = 450 В;
  • ёмкость: 1/300 + 1/300 + 1/300 = 1/С = 299 мкф.

Внешне подобное подключение обкладок (пластин) будет выглядеть так:

Выполняют такое соединение в том случае, если есть опасность пробоя диэлектрика конденсатора при подаче напряжения в цепь. Но ведь существует и ещё один способ монтажа.

Полезно знать! Применяют также последовательное и параллельное соединение резисторов и конденсаторов. Это делается с целью снижения подаваемого на конденсатор напряжения и исключения его пробоя. Однако следует учитывать, что напряжения должно быть достаточно для работы самого прибора.

Смешанное соединение конденсаторов: схема, причины необходимости применения

Такое подключение (его ещё называют последовательно-параллельным) применяют в случае необходимости увеличения, как ёмкости, так и напряжения. Здесь вычисление общих параметров немного сложнее, но не настолько, чтобы нельзя было разобраться начинающему радиолюбителю. Для начала посмотрим, как выглядит такая схема.

Составим алгоритм вычислений.

  • всю схему нужно разбить на отдельные части, высчитать параметры которых просто;
  • высчитываем номиналы;
  • вычисляем общие показатели, как при последовательном включении.

Выглядит подобный алгоритм следующим образом:

Преимущество смешанного включения конденсаторов в цепь по сравнению с последовательным или параллельным

Смешанное соединение конденсаторов решает задачи, которые не под силу параллельным и последовательным схемам. Его можно использовать при подключении электродвигателей либо иного оборудования, его монтаж возможен отдельными участками. Монтаж его намного проще за счёт возможности выполнения отдельными частями.

Интересно знать! Многие радиолюбители считают этот способ более простым и приемлемым, чем два предыдущих. На самом деле, так и есть, если полностью понять алгоритм действий и научиться пользоваться им правильно.

Смешанное, параллельное и

последовательное соединение конденсаторов

: на что обратить внимание при его выполнении

Соединяя конденсаторы, в особенности электролитические, обратите внимание на строгое соблюдение полярности. Параллельное присоединение подразумевает подключение «минус/минус», а последовательное – «плюс/минус». Все элементы должны быть однотипны –плёночные, керамические, слюдяные либо металлобумажные.

А вот что умеют делать всем известные китайские «изобретатели» – такой конденсатор явно долго не протянет

Полезно знать! Выход из строя конденсаторов часто происходит по вине производителя, экономящего на деталях (чаще это приборы китайского производства). Поэтому правильно рассчитанные и собранные в схему элементы будут работать намного дольше. Конечно, при условии отсутствия замыкания в цепи, при котором работа конденсаторов невозможна в принципе.

Калькулятор расчёта ёмкости при последовательном соединении конденсаторов

А что делать, если необходимая ёмкость неизвестна? Не каждому хочется самостоятельно рассчитывать необходимую ёмкость конденсаторов вручную, а у кого-то на это просто нет времени. Для удобства производства подобных действий редакция Seti.guru предлагает нашему уважаемому читателю воспользоваться онлайн-калькулятором расчёта конденсаторов при последовательном соединении или вычисления ёмкости. В работе он необычайно прост. Пользователю необходимо лишь ввести в поля необходимые данные, после чего нажать кнопку «Рассчитать». Программы, в которые заложены все алгоритмы и формулы последовательного соединения конденсаторов, а также вычислений необходимой ёмкости, моментально выдаст необходимый результат.

Как рассчитать энергию заряженного конденсатора: выводим окончательную формулу

Первое, что для этого необходимо сделать – рассчитать, с какой силой притягиваются обкладки друг к другу. Это можно сделать по формуле F = q₀ × E, где q₀ является показателем величины заряда, а E – напряжённостью обкладок. Далее нам необходим показатель напряжённости обкладок, который можно вычислить по формуле E = q / (2ε₀S), где q – заряд, ε₀ – постоянная величина, S – площадь обкладок. В этом случае получим общую формулу для расчёта силы притяжения двух обкладок: F = q₂ / (2ε₀S).

Итогом наших умозаключений станет вывод выражения энергии заряженного конденсатора, как W = A = Fd. Однако это не окончательная формула, которая нам необходима. Следуем далее: учитывая предыдущую информацию, мы имеем: W = dq₂ / (2ε₀S). При ёмкости конденсатора, выражаемой как C = d / (ε₀S) получаем результат W = q₂ / (2С). Применив формулу q = СU, получим итог: W = CU² /2.

Редакция Seti.guru советует сохранить эту памятку

Конечно, для начинающего радиолюбителя все эти расчёты могут показаться сложными и непонятными, но при желании и некоторой усидчивости с ними можно разобраться. Вникнув в смысл, он поразится, насколько просто производятся все эти расчёты.

Для чего нужно знать показатель энергии конденсатора

По сути, расчёт энергии применяется редко, однако есть области, в которых это знать необходимо. К примеру, фотовспышка камеры – здесь вычисление показателя энергии очень важно. Она накапливается за определённое время (несколько секунд), а вот выдаётся мгновенно. Получается, что конденсатор сравним с аккумулятором – разница лишь в ёмкости.

Ни одна фотовспышка не сможет работать без накопителя энергии, такого, как конденсатор

Подводя итог

Порой без соединения конденсаторов не обойтись, ведь не всегда можно подобрать подходящие по номиналам. Поэтому знание того как это сделать может выручить при поломке бытовой техники или электроники, что позволит значительно сэкономить на оплате труда специалиста по ремонту. Как наверняка уже понял Уважаемый читатель, сделать это несложно и под силу даже начинающим домашним мастерам. А значит стоит потратить немного своего драгоценного времени и разобраться в алгоритме действий и правилах их выполнения.

Правильность соединения конденсаторов гарантирует их долгую бесперебойную работу

Надеемся, что информация, изложенная в сегодняшней статье, была полезна нашим читателям. Возможно, у Вас остались какие-либо вопросы? В этом случае их можно изложить в обсуждении ниже. Редакция Seti.guru с удовольствием на них ответит в максимально короткие сроки. Если же Вы имеете опыт самостоятельного соединения конденсаторов (неважно, положительный он или отрицательный), убедительная просьба поделиться им с другими читателями. Это поможет начинающим мастерам более полно понять алгоритм действий и избежать ошибок. Пишите, делитесь, спрашивайте. А напоследок мы предлагаем посмотреть короткий, но довольно информативный видеоролик по сегодняшней теме.