Применение тиристора и симистора: принцип работы и способы управления

Полупроводниковые элементы применяются для создания различных устройств и техники. Некоторые из них выполняют функции электронных ключей, например, симисторы. Большинство радиолюбителей сталкивается с ремонтом различной техники, в которой он применяется. Для выполнения качественного ремонта следует получить подробную информацию о детали, выяснить ее структуру и принцип работы.

Общие сведения

Симистор (триак) является одним из видов тиристора и обладает большим количеством переходов p-n-типа. Его целесообразно применять в цепях переменного тока для электронного управления. Чтобы понять принцип работы симистора «чайникам» в этом вопросе, следует рассмотреть его структуру, функцию и сферы применения.

Информация о ключах

Ключи — устройства, которые применяются для коммутации или переключения в электрических цепях. Существует три их вида, и каждый из них обладает своими достоинствами и недостатками. Классифицируются ключи по типу переключения:

  1. Механические.
  2. Электромеханические.
  3. Электронные.

К механическим ключам относятся выключатели и рубильники. Применяются они в случаях необходимости ручной коммутации для замыкания одного или нескольких групп контактов. К виду электромеханических ключей следует отнести реле (контакторы). Электромагнитное реле состоит из магнита, представляющего катушку с подвижным сердечником. При подаче питания на катушку она притягивает сердечник с группой контактов: одни контакты замыкаются, а другие — размыкаются.

Среди достоинств применения электромеханических ключей можно выделить следующие: отсутствие падения напряжения и потери мощности на контактах, а также изолирование цепей нагрузки и коммутации. У этого типа ключей есть и недостатки:

  1. Число переключений ограниченно, поскольку контакты изнашиваются.
  2. При размыкании возникает электрическая дуга, которая приводит к разрушению контактов (электроэрозии). Невозможно применять во взрывоопасных средах.
  3. Очень низкое быстродействие.

Электронные ключи бывают на разной базе полупроводниковых элементов: транзисторах, управляемых диодах (тиристорах) и симметричных управляемых диодах (симисторах). Простейшим электронным ключом является транзистор биполярного типа с коллектором, эмиттером и базой, состоящего из 2 p-n-переходов. По структуре они бывают 2 типов: n-p-n и р-n-p.

Поскольку транзистор состоит из 2 p-n-переходов, то в зависимости от состояния, в которых они находятся, различают 4 режима работы: основной, инверсный, насыщения и отсечки. При активном режиме открыт коллекторный переход, а при инверсном — эмиттерный. При двух открытых переходах транзистор работает в режиме насыщения. При условии, что закрыты оба перехода, он будет работать в режиме отсечки.

Для использования транзистора необходимо всего 2 его состояния. Режим отсечки происходит при отсутствии тока базы, следовательно, при этом ток коллектора равен 0. При подаче достаточного значения тока на базу полупроводниковый прибор будет работать в режиме насыщения, т. е. в открытом состоянии.

Если рассматривать ключи на полевых транзисторах, то появляется возможность менять его проводимость при изменении величины напряжения на затворе, выполняющего функцию управляющего электрода. Управляя его работой при помощи воздействия на затвор, можно получить два состояния: открытое и закрытое. Ключи на полевых транзисторах обладают высоким быстродействием, чем на биполярных.

Электронные ключи, выполненные на тиристорах, обладают некоторыми особенностями. Тиристор является полупроводниковым радиоэлементом с p-n-p-n или n-p-n-p переходам и имеет 3, а иногда и 4 вывода. Состоит он из p-слоя (катода), n-слоя (анода) и управляющего электрода (базы). Его можно заменить 2 транзисторами разной структуры. Он представляет 2 ключа транзисторного типа, которые включены встречно. База одного транзистора подключается к коллектору другого.

При подаче на базу отпирающего тока управляемый диод откроется и останется в этом состоянии, пока величина тока не будет снижена до нулевого значения. При большом значении тока базы тиристор является обыкновенным полупроводниковым диодом, проводящим ток в одном направлении.

Он может функционировать в цепях переменного тока, но только на половину мощности. Для этих целей необходимо применять симистор.

Принцип работы симистора

Основным отличием симистора от тиристора является проводимость сразу в двух направлениях. Симистор можно заменить 2 тиристорами, которые имеют встречно-параллельное подключение на рисунке 1. На нем представлено условное графическое обозначение триака на электрических принципиальных схемах. В некоторой литературе можно встретить и другие названия: триак и симметричный управляемый диод.

Рисунок 1. Симистор (схема включения 2 тиристоров) и его графическое обозначение

Существует простой пример, который позволит понять даже «чайникам», как работает симистор. Дверь в гостинице можно открывать в двух направлениях, причем в нее могут войти и выйти сразу 2 человека. Этот простой пример показывает, что триак может пропускать ток сразу в двух направлениях (прямом и обратном), поскольку он состоит из 5 p-n-переходов. Управление его работой осуществляется при помощи базы.

Слои симисторного ключа, изготовленные из полупроводника, похожи на переход транзистора, но имеют еще 3 дополнительных области n-типа. Четвертый слой находится возле катода и является разделенным, поскольку анод и катод при движении тока выполняют некоторые функции, а при обратном направлении движения — меняются местами. Пятый слой находится возле базы.

При подаче сигнала на управляющий вывод произойдет отпирание симметричного управляющегося диода, поскольку его анод будет иметь положительный потенциал. В этом случае по верхнему тиристору потечет ток. При изменении полярности ток будет течь по нижнему тиристору (рисунок 1). Об этом свидетельствует его вольт-амперная характеристика (ВАХ) на рисунке 2. Она состоит из двух кривых, повернутых на 180 градусов.

Рисунок 2. ВАХ триака

Литерой «А» обозначено его закрытое состояние, а «В» — открытое. Urrm и Udrm — допустимые значения прямого и обратного напряжений. Idrm и Irrm — прямой и обратный токи.

Виды и сферы применения

Поскольку симистор является видом тиристора, то основным их отличием является параметры управляющего электрода (базы). Кроме того, они классифицируются по другим признакам:

  1. Конструкция.
  2. Величина тока, при которой наступает перегрузка.
  3. Характеристики базы.
  4. Значения прямых и обратных токов.
  5. Величина прямого и обратного напряжений.
  6. Тип электрической нагрузки. Бывают силовыми и обычными.
  7. Параметр силы тока, необходимой для открытия затвора.
  8. Коэффициент dv/dt или скорость, с которой происходит переключение.
  9. Производитель.
  10. Мощность.

Благодаря особенности пропускания тока в двух направлениях, их используют в цепях переменного тока, поскольку тиристор не может работать на полную мощность. Симметричные тиристоры получили широкое применение в таких устройствах:

  1. Приборах для регулировки яркости света или диммерах.
  2. Регуляторах оборотов для различного инструмента (лобзики, шуруповерты и т. д.).
  3. Электронной регулировке температур для индукционных плит.
  4. Холодильной аппаратуре для плавного запуска двигателя.
  5. Бытовой технике.
  6. Промышленности для освещения, плавного пуска приводов машин и механизмов.

Среди достоинств симисторов можно выделить незначительную стоимость, надежность и они не генерируют помехи (не используются контакты механического типа), а также длительный срок эксплуатации. К основным недостаткам следует отнести следующие: необходимость в дополнительном теплоотводе, невозможность использования на высоких частотах, а также влияние помех и шумов различного рода.

Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно. Для применения в какой-либо схеме или устройстве следует знать основные технические характеристики, поскольку владение этой информацией поможет избежать множества трудностей перед начинающим радиолюбителем.

Технические характеристики

У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные. Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором. У симисторов существуют следующие характеристики:

  1. Величина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
  2. Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
  3. Период включения и выключения.
  4. Коэффициент dv/dt.

Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt. Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа. Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.

При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять.

Кроме того, в некоторых источниках можно встретить понятие бесснабберного симистора. Это тип, который применяется при индуктивных нагрузках. Примером такой модели являются m10lz47, mac12n и tg35c60.

Диагностика в схемах

В некоторых случаях радиолюбитель сталкивается с проверкой симистора, однако не всегда может ее корректно произвести. В случае выхода триака из строя его желательно выпаять из платы и произвести его проверку. Обычный цифровой мультиметр для этой цели не подойдет, поскольку его ток слишком мал, чтобы открыть переход детали. Для этого подойдет обыкновенный стрелочный омметр. Вариантов проверки всего два: использовать стрелочный прибор или собрать спецсхему для этой операции. Для осуществления проверки по первому варианту необходимо руководствоваться следующим алгоритмом:

  1. Включить прибор в режим измерения величины сопротивления.
  2. Подключить щупы тестера к эмиттеру и коллектору. Если прибор показывает бесконечное сопротивление, то деталь исправна. Остальные случаи указывают на ее неисправность.
  3. Соединить базу и вывод Т2. В этом случае сопротивление будет в пределах от 40 до 250 Ом. Если поменять местами щупы, то прибор снова покажет бесконечность. Это свидетельствует об исправности симистора.

Однако первый метод диагностики в некоторых случаях дает не совсем нужные и верные результаты. Очень часто проверенная таким способом деталь в схеме не работает. Это связано с тем, что герметичность ее корпуса нарушена. Недостаток метода — неточная диагностика. Для более точной диагностики следует проверить триак в работе (схема 1). Для этого необходимо использовать лампу накаливания и аккумулятор.

Схема 1. Проверка симметричного тиристора при помощи лампы накаливания и источника питания

В этой схеме симистор будет проверен под нагрузкой. При касании управляющего электрода, лампочка загорится и будет гореть некоторое время, пока не пропадет питание на аноде или ток на базе не будет малой величины. Недостаток метода — простая конструкция, при которой неудобно осуществлять проверку, поскольку следует напаивать провода на выводы триака. После проверки при неисправной детали следует произвести замену.

Таким образом, симисторы используются в управляемых устройствах в качестве электронных ключей, способных пропускать ток в двух направлениях. Их несложно проверить и желательно использовать специальную схему для этой операции.

Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор – это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.

Тиристоры

Тиристор является переключающим полупроводниковым прибором, который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один – это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора – симистор — устройство и работа его в различных цепях.

Тиристор – это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.

Свойства тиристоров

Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:

  1. Тиристоры, подобно диодам, способны проводить электрический ток только в одном направлении. В этом случае они работают в схеме, как выпрямительный диод.
  2. Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод – у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
  3. Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
  4. Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.

Тиристор и его структура

Тиристор – это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.

Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) – это катод. К ней приложено отрицательное напряжение источника питания.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Как работает отпирание тиристора

Для понимания принципа работы тиристора нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.

Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.

Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.

Как отключить тиристор

Переход в запертое состояние тиристора возможен в том случае, если к электроду управления открытого элемента не прикладывается сигнал. При этом ток спадает до определенной величины, которая называется гипостатическим током (или током удержания).

Тиристор отключится и в том случае, если произойдет размыкание в цепи нагрузки. Либо когда напряжение, которое прикладывается к цепи (внешней), меняет свою полярность. Это происходит под конец каждого полупериода в случае, когда питается схема от источника переменного тока.

Когда тиристор работает в цепи постоянного тока, запирание можно осуществить при помощи простого выключателя или кнопки механического типа. Он соединяется с нагрузкой последовательно и применяется для обесточивания цепи. Аналогичен и принцип работы регулятора мощности на симисторе, правда, имеются в схеме некоторые особенности.

Способы отключения тиристоров

Но можно выключатель соединить параллельно, тогда с его помощью происходит шунтирование тока анода, и тиристор переводится в запертое состояние. Некоторые виды тиристоров могут включаться повторно, если разомкнуть контакты выключателя. Объяснить это можно тем, что во время размыкания контактов паразитные емкости переходов тиристора накапливают заряд, создавая тем самым помехи.

Поэтому желательно располагать выключатель так, чтобы он находился между катодом и электродом управления. Это позволит гарантировать, что тиристор отключится нормально, а удерживающий ток отсечется. Иногда для удобства и повышения быстродействия и надежности применяют вместо механического ключа вспомогательный тиристор. Стоит отметить, что работа симистора во многом схожа с функционированием тиристоров.

Симисторы

А теперь ближе к теме статьи – нужно рассмотреть частный случай тиристора – симистор. Принцип работы его схож с тем, что был рассмотрен ранее. Но имеются некоторые отличия и характерные особенности. Поэтому нужно поговорить о нем более подробно. Симистор представляет собой прибор, в основе которого находится кристалл полупроводника. Очень часто используется в системах, которые работают на переменном токе.

Самое простое определение этого прибора – выключатель, но управляемый. В запертом состоянии он работает точно так же, как и выключатель с разомкнутыми контактами. При подаче сигнала на электрод управления симистора происходит переход прибора в открытое состояние (режим проводимости). При работе в таком режиме можно провести параллель с выключателем, у которого контакты замкнуты.

Когда сигнал в цепи управления отсутствует, в любой из полупериодов (при работе в цепях переменного тока) происходит переход симистора из режима открытого в закрытый. Симисторы широко используются в режиме релейном (например, в конструкциях светочувствительных выключателей или термостатов). Но они же нередко применяются и в системах регулирования, которые функционируют по принципам фазового управления напряжения на нагрузке (являются плавными регуляторами).

Структура и принцип работы симистора

Симистор – это не что иное, как симметричный тиристор. Следовательно, исходя из названия, можно сделать вывод – его легко заменить двумя тиристорами, которые включаются встречно-параллельно. В любом направлении он способен пропустить ток. У симистора имеется три основных вывода – управляющий, для подачи сигналов, и основные (анод, катод), чтобы он мог пропускать рабочие токи.

Симистор (принцип работы для «чайников» этого полупроводникового элемента предоставлен вашему вниманию) открывается, когда на управляющий вывод подается минимальное необходимое значение тока. Или в том случае, когда между двумя другими электродами разность потенциалов выше предельно допустимого значения.

В большинстве случаев превышение напряжения приводит к тому, что симистор самопроизвольно срабатывает при максимальной амплитуде питающего напряжения. Переход в запертое состояние происходит в случае смены полярности или при уменьшении рабочего тока до уровня ниже, чем ток удержания.

Как отпирается симистор

При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Какие накладываются ограничения при использовании симисторов

Его сложно использовать, когда нагрузка индуктивного типа. Скорость изменения напряжения и тока ограничивается. Когда симистор переходит из запертого режима в открытый, во внешней цепи возникает значительный ток. Напряжение не падает мгновенно на силовых выводах симистора. А мощность будет мгновенно развиваться и достигает довольно больших величин. Та энергия, которая рассеивается, за счет малого пространства резко повышает температуру полупроводника.

В случае превышения критического значения происходит разрушение кристалла, ввиду чрезмерно быстрого нарастания силы тока. Если к симистору, который находится в запертом состоянии, приложить некоторое напряжение и резко его увеличить, то произойдет открытие канала (при отсутствии сигнала в цепи управления). Такое явление можно наблюдать по причине того, что происходит накапливание заряда внутренней паразитной емкостью полупроводника. Причем ток заряда имеет достаточное значение, чтобы отпереть симистор.