Удельный вес стали: характеристика физической величины, ее значения для разных видов сплава

19. Значение механических и физических свойств при эксплуатации изделий

Свойства, как показатели качества материала

Свойства металлов делятся на физические, химические, механические и технологические. К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.

К химическим – окисляемость, растворимость и коррозионная стойкость. К механическим – прочность, твердость, упругость, вязкость, пластичность.

К технологическим – прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.

Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь. Твердостью называется способность тела противостоять проникновению в него другого, более твердого тела. Упругость – свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).

Вязкостью называется способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость – свойство обратное хрупкости.

Пластичностью называется свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность – свойство обратное упругости.

Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить доброкачественность готовых изделий.

Механические испытания имеют важнейшее значение в промышленности.

Детали машин, механизмов и сооружений работают под нагрузками. Нагрузки на детали бывают различных видов: одни детали нагружены постоянно действующей в одном направлении силой, другие подвержены ударам, у третьих силы более или менее часто изменяются по своей величине и направлению.

Некоторые детали машин подвергаются нагрузкам при повышенных температурах, при действии коррозии; такие детали работают в сложных условиях.

В соответствии с этим разработаны различные методы испытаний металлов, с помощью которых определяют механические свойства. Наиболее распространенными испытаниями являются статическое растяжение, динамические испытания и испытания на твердость.

Статическими называются такие испытания, при которых испытуемый металл подвергают воздействию постоянной силы или силы, возрастающей весьма медленно.

Динамическими называют такие испытания, при которых испытуемый металл подвергают воздействию удара или силы, возрастающих весьма быстро.

Кроме того, в ряде случаев производятся испытания на усталость, ползучесть и износ, которые дают более полное представление о свойствах металлов.

Механические свойства – это достаточная прочность. Металлы обладают более высокой прочностью по сравнению с другими материалами, поэтому нагруженные детали машин, механизмов и сооружений обычно изготовляются из металлов.

Для изготовления рессор и пружин применяются специальные стали и сплавы, обладающие высокой упругостью.

Пластичность металлов дает возможность производить их обработку давлением (ковать, прокатывать).

Физические свойства. В авиа-, авто– и вагоностроении вес деталей часто является важнейшей характеристикой, поэтому сплавы алюминия и магния являются здесь особенно полезными.

Удельная прочность для некоторых алюминиевых сплавов выше, чем для мягкой стали. Плавкость используется для получения отливок путем заливки расплавленного металла в формы. Легкоплавкие металлы (свинец) применяются в качестве закалочной среды для стали. Некоторые сложные сплавы имеют низкую температуру плавления, что расплавляются в горячей воде. Такие сплавы применяются для отливки типографских матриц, в приборах, служащих для предохранения от пожаров.

Металлы с высокой электропроводностью используются в электромашиностроении, для устройства линий электропередачи, а сплавы с высоким электросопротивлением для ламп накаливания электронагревательных приборов.

Магнитные свойства металлов играют первостепенную роль в электромашиностроении (электродвигатели, трансформаторы), в электроприборостроении (телефонные и телеграфные аппараты).

Теплопроводность металлов дает возможность производить их равномерный нагрев для обработки давлением, термической обработки; она обеспечивает возможность пайки металлов, их сварки.

Химические свойства. Коррозионная стойкость особенно важна для изделий, работающих в сильно окисленных средах (колосниковые решетки, детали машин химической промышленности). Для достижения высокой коррозионной стойкости производят специальные нержавеющие, кислотостойкие и жаропрочные стали, а также применяют защитные покрытия для изделий.

Следующая глава >

Похожие главы из других книг

4 Понятие о физической величине Значение систем физических единиц
Физическая величина является понятием как минимум двух наук: физики и метрологии. По определению физическая величина представляет собой некое свойство объекта, процесса, общее для целого ряда объектов по

39. Приборы для измерения механических величин
Измерение механических величин сводится к измерению параметров движения.Для измерения перемещения требуется измерять длины пути. Для этого используются не только механические, но и оптоэлектронные и другие принципы

46. Определение механических свойств материалов
Важное значение для точности измерений, для срока службы имеет выбор материала.Но, чтобы выбрать материал, требуется знать его свойства при испытаниях на прочность, выносливость, вязкость, твердость и т. п.В устройствах

Выбор материала для лесной скульптуры
Подобрать материал для будущей скульптуры достаточно сложно. Порой не сразу можно уловить намеки природы, проследить динамику движения, контуры, сам образ будущей фигурки. Для того чтобы найти заготовку, совсем не обязательно

Сборка механических передач зацепления
Механические передачи, работающие на принципе зацепления, могут быть зубчатыми и червячными.Зубчатые передачи, в свою очередь, подразделяются на цилиндрические и конические. Но и это не последняя классификация зубчатых передач.В

2.2. Показатели качества как основная категория оценки потребительских ценностей
Сегодня на рынке большое количество разнообразной продукции (товаров и марок) с самыми различными ценами на кажущиеся (покупателю) одинаковые товары и в то же время одинаковыми ценами на

Показатели качества воды и их определение. Влияние на здоровье человека
Под качеством природной воды в целом понимается характеристика ее состава и свойств, определяющая ее пригодность для конкретных видов водопользования (ГОСТ 17.1.1.01–77), при этом критерии качества

Интегральные показатели качества вод – индексы качества
Каждый из показателей качества воды в отдельности хотя и несет информацию о качестве воды, все же не может служить мерой качества воды, т. к. не позволяет судить о значениях других показателей. Вместе с тем,

Картриджи для удаления механических примесей
Принцип очистки воды от механических примесей с помощью картриджей прост и понятен. Исходная вода, проходя через картридж, очищается от песка, ила, взвесей и т. д.При фильтрации воды через фильтровальные перегородки,

4.2. СТАНОВЛЕНИЕ ФИЗИЧЕСКИХ ОСНОВ ТЭ
Д.К
. Максвелл в течение 1855–1873 гг., обобщив результаты экспериментальных исследований, известных в виде законов Ш. Кулона, А. Ампера, законов и идей М. Фарадея и Э.Х. Ленца сформировал на их основе систему уравнений ЭМП, описывающую

25. Зависимость механических и физических свойств от состава в системах различного типа
Свойство – это количественная или качественная характеристика материала, определяющая его общность или различие с другими материалами.Выделяют три основные группы свойств:

34. Изменение микроструктуры и механических свойств металлов при нагреве после горячей и холодной обработки давлением
Обработка металлов давлением основана на их способности в определенных условиях пластически деформироваться в результате воздействия на

Значение мотоцикла
В наши дни мотоцикл стал необходимой принадлежностью хозяйственной и культурной жизни страны; он проник и в армию. На так’ давно мотоциклу в военном деле приписывали исключительно вспомогательную роль как средству связи; в настоящее время он имеет

Разделы:
Физика

Наибольшие трудности при изучении физики
учащиеся испытывают при решении задач, т.е. когда
требуется применить знания. Эти трудности
представляются ребятам настолько большими, что
многие из них отказываются даже от попыток
решать задачи
. Отказ от решения задач еще как-то
«проходил» во времена устных экзаменов по
физике. Но теперь – как при прохождении
Государственной итоговой аттестации, выполнении
заданий Единого государственного экзамена или
тестирования при поступлении – проверяют именно
умение применять полученные знания, а не
декларировать их.

Понимание смысла физических законов – главная
цель школьного курса физики, но понимание этих
законов может родиться только в осознанной
деятельности по применению этих законов.
Школьникам же часто предлагают алгоритмы
решения задач, которые провоцируют бездумное,
автоматическое применение физических формул.
Преодолеть эту принципиальную трудность можно,
только неоднократно применяя законы физики в
тщательно отобранных простейших ситуациях,
когда смысл этих законов кристально ясен.

В школьном курсе физики тысячи задач. Однако,
если посмотреть на все множество этих задач «с
высоты птичьего полета», то нетрудно заметить,
что подавляющее их большинство группируются
вокруг нескольких десятков типичных учебных
ситуаций
. Эти ситуации можно назвать ключевыми.
А овладение ключевыми ситуациями «даст ключи» к
решению задач.

Ключевые ситуации – важнейшая связь между
«теорией» и «задачами». Без этой связи теория
мертва для школьника, а задачи представляются
ему случайной россыпью неинтересных загадок.
Однако пока еще некоторые учителя «дают» своим
ученикам «теорию» отдельно, а «задачи» отдельно.
После такого разрезания по живому от живой
физики остаются только мертвые формулы-шаблоны
для примитивных задач на подстановку.

Изучение ключевых ситуаций – это живой мост
между «теорией» и «задачами», причем мост с
двухсторонним движением. С одной стороны, задачи
рождаются при изучении ключевых ситуаций, в
которых наглядно проявляется действие
физических законов, с другой стороны, благодаря
решению задач на основе ключевой ситуации теория
осознается, т.е
. становится действенной силой, а
не пассивным набором фактов и формул.
И еще одна очень важная роль ключевых ситуаций.
Дело в том, что результатом изучения школьного
курса физики должен быть не набор решенных задач
(это быстро забывается), а понимание физических
законов и физическая интуиция, которая может
развиваться именно при рассмотрении ключевых
ситуаций.

Приложение 1.
Фрагмент урока с выделением ключевой ситуации по
теме «Плотность».
Приложение 2. Фрагмент
урока с выделением ключевой ситуации по теме
«Полые тела».
Приложение 3.
Дополнительный материал по теме «Сплавы».

Приведем фрагмент урока с выделение ключевой
ситуации по теме «Сплавы».

Фрагмент урока по теме «СПЛАВЫ»

Учитель. Тема урока зашифрована
ребусом. Кто первый раскроет секрет?

Ученики.

Учитель. Тема урока «Сплавы». 
Сплав — макроскопически однородная смесь двух
или большего числа химических элементов с
преобладанием металлических компонентов.
Основной или единственной фазой сплава, как
правило, является твёрдый раствор легирующих
элементов в металле, являющемся основой сплава.
Сплавы имеют металлические свойства, например:
металлический блеск, высокие электропроводность
и теплопроводность. Иногда компонентами сплава
могут быть не только химические элементы, но и
химические соединения, обладающие
металлическими свойствами
. Например, основными
компонентами твёрдых сплавов являются карбиды
вольфрама или титана. Макроскопические свойства
сплавов всегда отличаются от свойств их
компонентов, а макроскопическая однородность
многофазных (гетерогенных) сплавов достигается
за счёт равномерного распределения примесных
фаз в металлической матрице.
Сплавы обычно получают с помощью смешивания
компонентов в расплавленном состоянии с
последующим охлаждением
. При высоких
температурах плавления компонентов, сплавы
производятся смешиванием порошков металлов с
последующим спеканием (так получаются, например,
многие вольфрамовые сплавы).
Сплавы являются одним из основных
конструкционных материалов
. Среди них
наибольшее значение имеют сплавы на основе
железа и алюминия
. В состав многих сплавов могут
вводиться и неметаллы, такие как углерод,
кремний, бор и др. В технике применяется более 5
тыс
. сплавов.

Цель нашего урока
научиться решать задачи для определения
плотности, массы или объема сплавов или веществ
входящих в их состав.
Рассматривая сплавы, обычно предполагают, что
объем  сплава равен сумме объемов
составляющих его веществ. В таком случае
плотность сплава ,
где индексы 1 и 2 относятся к двум компонентам
сплава.
Если заданы или требуется найти массы
компонентов известной плотности ρ1 и ρ2, то объемы
компонентов надо выразить через  их массы и
плотности, в результате чего формула для
плотности сплава примет вид .
Часто в задаче дано  или требуется найти
соотношение масс компонентов сплава. Обозначим . Тогда . Эта формула связывает
плотность сплава ρ и массовое отношение
компонент . Из
нее при  следует:
. Приведенные
формулы позволяют по заданному значению одной из
величин ( или ρ)
найти значение другой.

Запишите в тетрадях:

Примечание.

1. Задача первого уровня предназначена для
применения основной формулы: .
2. Задачи второго уровня похожи, поэтому
целесообразно применить разные способы решения.
3
. Задачи третьего уровня предусмотрены для
закрепления способов решения задач предложенных
ранее с добавлением дополнительных вычислений
(объема и процентного отношения).

РЕШЕНИЕ ЗАДАЧ

Задачи по теме «СПЛАВЫ»:

УРОВЕНЬ 1

Найдите плотность бронзы, для изготовления
которой взяли 100 г меди и 30 г олова, считая, что
объем сплава равен сумме объемов входящих в него
металлов.

УРОВЕНЬ 2

1. Кусок сплава из свинца и олова массой 664 г
имеет плотность 8,3 г/см3
. Определите массу
свинца в сплаве. Принять объем сплава равным
сумме объемов его составных частей.

2. В куске кварца содержится небольшой
самородок золота
. Масса куска 100 г, а его
плотность 8 г/см3
. Определите массу
золота,  содержащегося в кварце. Принять, что
плотность кварца и золота соответственно равны
2,65 и 19,36 г/см3.

УРОВЕНЬ 3

1. Сплав золота и серебра массой 400 г имеет
плотность 14·103 кг/м3. Полагая объем сплава
равным сумме объемов его составных частей,
определите массу, объем золота и процентное
содержание его в сплаве.

2. В чистой воде растворена кислота. Масса
раствора 240 г, а его плотность 1,2 г/см3.
Определите объем кислоты в растворе и его
процентное содержание, если плотность кислоты 1,8
г/см3
. Принять объем раствора равным сумме
объемов его составных частей.

Выходной контроль:

Установите соответствие:

Ответы: 1-Д, 2-Ж, 3-А, 4-Б, 5-В. 6-Г, 7-Е.

Домашнее задание:

Дополнительный материал.

Сплавы различаются по своему предназначению.
Конструкционные сплавы: стали, чугуны,
дюралюминий.
Конструкционные со специальными свойствами
(например, искробезопасность, антифрикционные
свойства): бронзы, латуни.
Для заливки подшипников: баббит.
Для измерительной и электронагревательной
аппаратуры: манганин, нихром.
Для изготовления режущих инструментов:
победит.

Подготовьте сообщение о каком-нибудь сплаве.
Расскажите о веществах, которые в него входят, о
их процентном вхождении в сплав и т.д.

Задачи:

1. Найдите плотность стали (сталь —
деформируемый (ковкий) сплав железа с углеродом),
для изготовления которой взяли 100 г железа и 2 г
углерода (углекислого газа), считая, что объем
сплава равен сумме объемов входящих в него
веществ.
2. Чтобы получить латунь, сплавили куски меди
массой 178 кг и цинка массой 355 кг
. Какой плотности
была получена латунь? Объем сплава равен сумме
объемов его составных частей.
3
. Сплав золота и серебра массой 500 г имеет
плотность 11 г/см3
. Полагая объем сплава равным
сумме объемов его составных частей, определите
массу, объем золота и процентное содержание его в
сплаве.

Ответы: 1. 0,098 г/см3, 2. 2019 кг/м3, 3. 50 г, 2,59
см3, 10%.

Подведение итогов урока. Рефлексия

На полях рабочей тетради изобрази схематически
один из рисунков, который соответствует степени
усвоения материала на уроке. Солнце – мне все
понятно, туча – материал интересный, но надо еще
поработать, луна – я все проспал.

Литература

  1. Материалы курса «Как научить решать задачи по
    физике (основная школа). Подготовка к ГИА: лекции
    1-4. – М.: Педагогический университет «Первое
    сентября», 2010
    . -80с.
  2. Сборник задач по физике: Учеб. Пособие для
    учащихся 7-8 классов средней школы
    . – 6-е изд.,
    перераб
    . – М.: Просвещение, 1994. – 191 с.: ил.
  3. Физическая олимпиада в 6-7 классах средней школы:
    Пособие для учащихся. – 2-е изд, перераб. И доп.
    М.: Просвещение, 1987
    . – 192 с: ил.

9.06.2011